He has participated in research in the field of Environmental Engineering, focusing on the treatment of wastewater through advanced oxidation processes or biological treatments, as well as the use of electrochemical processes to produce oxidants (ozone, hydrogen peroxide, persulfate...) for the treatment of wastewater and polluted soils, and for atmospheric decontamination through electro-absorption processes. He has made 2 predoctoral stays, the first at the University of Bremen under the supervision of Prof. Dr. Stefan Stolte and the second at the University of Cincinnati under the supervision of Prof. Dr. Dionysios D. Dionysiou; and a postdoctoral stay at Porto University under the supervision of Prof. Dr. Vítor J.P. Vilar.
He has co-directed Final Degree Projects and Master's Thesis, has participated in international, national and regional projects, has attended several national and international conferences, and has taught on different degrees (Chemical Engineering, Chemistry, Environmental Sciences...).
Integration of a 3D-printed electrochemical reactor with a tubular membrane photoreactor to promote sulfate-based advanced oxidation processes
de Olivera, A.R.; Santos, C.S.; Mena, I.F.; Montiel, M.A.; Montes, R.; Quintana, J.B.; Rodil, R.; Gomes, A.I.; Moreira, F.C.; Gäbler, J.; Schäfer, L.; Sáez, C.; Rodrigo, M.A.; Vilar, V.J.P.
- Chemical Engineering Journal 500, 156900 (2024)
- doi:10.1016/j.cej.2024.156900
Towards scaling up of the electrochemical production of Caros acid: Electrode size and/or stacking?
Castro, M.P.; Montiel, M.A.; Mena, I.F.; Gäbler, J.; Barton, D.; Sáez, C.; Rodrigo, M.A.
- Chemical Engineering Journal 495, 153870 (2024)
- doi:10.1016/j.cej.2024.153870
Remediation of soils contaminated with methomyl using electrochemically produced gaseous oxidants
da Silva, L.M.; Mena, I.F.; Sáez, C.; Motheo, A.J.; Rodrigo, M.A.
- Chemosphere 362, 142653 (2024)
- doi:10.1016/j.chemosphere.2024.142653
Treatment of Organics in Wastewater Using Electrogenerated Gaseous Oxidants
da Silva, L.M.; Mena, I.F.; Sáez, C.; Motheo, A.J.; Rodrigo, M.A.
- Industrial & Engineering Chemistry Research 63 (15), 65126520 (2024)
- doi:10.1021/acs.iecr.3c03265
Improving performance of proton-exchange membrane (PEM) electro-ozonizers using 3D printing
Mena, I.F.; Montiel, M.A.; Sáez, C.; Rodrigo, M.A.
- Chemical Engineering Journal 464, 142688 (2023)
- doi:10.1016/j.cej.2023.142688
Biochar from grape pomace, a waste of vitivinicultural origin, is effective for root-knot nematode control
Martínez-Gómez, Á.; Andrés, M.F.; Barón-Sola, Á; Díaz-Manzano, F.E.; Yousef, I.; Mena, I.F.; Díaz, E.; Gómez-Torres, O.; González-Coloma, A.; Hernández, L.E.; Escobar, C.
- Biochar 5 (1), 30 (2023)
- doi:10.1007/s42773-023-00228-8
Outstanding productions of peroxymonosulfuric acid combining tailored electrode coating and 3D printing
Castro, M.P.; Montiel, M.A.; Mena, I.F.; Gäbler, J.; King, H.; Sáez, C.; Rodrigo, M.A.
- Journal of Water Process Engineering 53, 103902 (2023)
- doi:10.1016/j.jwpe.2023.103902
Optimization of the electrolytic production of Caros acid. Towards industrial production using diamond electrodes
Castro, M.P.; Mena, I.F.; Montiel, M.A.; Gäbler, J.; Schäfer, L.; Sáez, C.; Rodrigo, M.A.
- Separation and Purification Technology 320, 124118 (2023)
- doi:10.1016/j.seppur.2023.124118
Electrochemical generation of chlorine dioxide for use in environmental remediation
da Silva, L.M.; Mena, I.F.; Montiel, M.A.; Sáez, C.; Motheo, A.J.; Rodrigo, M.A.
- Process Safety and Environmental Protection 177, 1249-1259 (2023)
- doi:10.1016/j.psep.2023.07.088
Electrochemical generation of ozone for application in environmental remediation
da Silva, L.M.; Mena, I.F.; Montiel, M.A.; Sáez, C.; Motheo, A.J.; Rodrigo, M.A.
- Results in Engineering 20, 101436 (2023)
- doi:10.1016/j.rineng.2023.101436
On the way to raising the technology readiness level of diamond electrolysis
Montiel, M.A.; Mena, I.F.; Lobato, J.; Sáez, C.; Rodrigo, M.A.
- Current Opinion in Electrochemistry 33, 100928 (2022)
- doi:10.1016/j.coelec.2021.100928
Does electro-peroxonation improve performance of electro-ozonation?
Rodríguez-Peña, M.; Mena, I.F.; Barrios Pérez, J.A.; Barrera-Díaz, C.E.; Rodrigo, M.A.
- Journal of Environmental Chemical Engineering 10, 107578 (2022)
- doi:10.1016/j.jece.2022.107578
An overview of ionic liquid degradation by advanced oxidation processes
Mena, I.F.; Diaz, E.; Rodriguez, J.J.; Mohedano, A.F.
- Critical Reviews in Environmental Science and Technology 52 (16), 2844-2887 (2022)
- doi:10.1080/10643389.2021.1896273
Using solar power regulation to electrochemically capture carbon dioxide: Process integration and case studies
Carvela, M.; Mena, I.F.; Lobato, J.; Rodrigo, M.A.
- Energy Reports 8, 4957-4963 (2022)
- doi:10.1016/j.egyr.2022.03.198
Towards the Electrochemical Retention of CO2: Is it Worth it?
Carvela, M.; Mena, I.F.; Raschitor, A.; Lobato, J.; Rodrigo, M.A.
- ChemElectroChem 8 (20), 3947-3953 (2021)
- doi:10.1002/celc.202101080
Evaluation of Goethite as a Catalyst for the Thermal Stage of the Westinghouse Process for Hydrogen Production
Fernández-Marchante, C.M.; Raschitor, A.; Mena, I.F.; Rodrigo, M.A.; Lobato, J.
- Catalysts 11 (10), 1145 (2021)
- doi:10.3390/catal11101145
Adsorptive interaction of peroxymonosulfate with graphene and catalytic assessment via non-radical pathway for the removal of aqueous pharmaceuticals
Solís, R.R.; Mena, I.F.; Nadagouda, M.N.; Dionysiou, D.D.
- Journal of Hazardous Materials 384, 121340 (2021)
- doi:10.1016/j.jhazmat.2019.121340
Cation and anion effect on the biodegradability and toxicity of imidazolium and cholinebased ionic liquids
Mena, I.F.; Diaz, E.; Palomar, J.; Rodriguez, J.J.; Mohedano, A.F.
- Chemosphere 240, 124947 (2020)
- doi:10.1016/j.chemosphere.2019.124947
Biological oxidation of choline-based ionic liquids in sequencing batch reactors
Mena, I.F.; Diaz, E.; Rodriguez, J.J.; Mohedano, A.F.
- Journal of Chemical Technology & Biotechnology 95, 922-931 (2020)
- doi:10.1002/jctb.5954
Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation
Mena, I.F.; Cotillas, S.; Diaz, E.; Sáez, C.; Mohedano, A.F.; Rodrigo, M.A.
- Journal of Hazardous Materials 372, 77-84 (2019)
- doi:10.1016/j.jhazmat.2017.12.015
Catalytic wet peroxide oxidation of imidazolium-based ionic liquids: Catalyst stability and biodegradability enhancement
Mena, I.F.; Diaz, E.; Pérez-Farias, C.; Stolte, S.; Moreno-Andrade, I.; Rodriguez, J.J.; Mohedano, A.F.
- Chemical Engineering Journal 376, 120431 (2019)
- doi:10.1016/j.cej.2018.11.129
Assessment the ecotoxicity and inhibition of imidazolium ionic liquids by respiration inhibition assays
Diaz, E.; Monsalvo, V.M.; Lopez, J.; Mena, I.F.; Palomar, J.; Rodriguez, J.J.; Mohedano, A.F.
- Ecotoxicology and Environmental Safety 162, 29-34 (2018)
- doi:10.1016/j.ecoenv.2018.06.057
Stability of carbon-supported iron catalysts for catalytic wet peroxide oxidation of ionic liquids
Mena, I.F.; Diaz, E.; Moreno-Andrade, I.; Rodriguez, J.J.; Mohedano, A.F.
- Journal of Environmental Chemical Engineering 6 (5), 6444-6450 (2018)
- doi:10.1016/j.jece.2018.09.061
Influence of the supporting electrolyte on the removal of ionic liquids by electrolysis with diamond anodes
Mena, I.F.; Cotillas, S.; Diaz, E.; Sáez, C.; Mohedano, A.F.; Rodrigo, M.A.
- Catalysis Today 313, 203-210 (2018)
- doi:10.1016/j.cattod.2017.10.025
Electrolysis with diamond anodes: Eventually, there are refractory species!
Mena, I.F.; Cotillas, S.; Diaz, E.; Sáez, C.; Rodriguez, J.J.; Cañizares, P.; Mohedano, A.F.; Rodrigo, M.A.
- Chemosphere 195, 771-776 (2018)
- doi:10.1016/j.chemosphere.2017.12.120
CWPO of bisphenol A with iron catalysts supported on microporous carbons from grape seeds activation
Mena, I.F.; Diaz, E.; Rodriguez, J.J.; Mohedano, A.F.
- Chemical Engineering Journal 318, 153-160 (2017)
- doi:10.1016/j.cej.2016.06.029